
make software better, make better software

 SILVERTHREAD ©2016

Is your software healthy? Process measures tell only part of the story.

Quantifying design quality helps to steer projects and improve software economics.

Software projects are complex and complicated.
Software systems are too complicated for individual human beings to
understand. No single person can understand them in their entirety.
Evolving complex and durable software assets is challenging. Many
software code bases are decades old, contain millions of lines of code,
and are increasingly complex. They are so mature that geriatric is a
better description. Unnecessary complexity results in highly
unpredictable outcomes.

Design quality has more impact on agility than process does.
Design quality in a software system is the single most important factor
impacting business agility. When design quality is good, developers
can understand the code, teams can communicate architectural
intent effectively, and software delivery is efficient. When design
quality of a code base degrades, waste, rework, and unnecessary
overhead destroy efficiency and unintended consequences degrade
quality. Eliminating unnecessary complexity yields substantial
rewards in efficiency, effectiveness, and staff morale.

Systems and software leaders need more honest measures.
Every software project aims to build and sustain resilient designs,
maintainable code, and thorough, automated tests. Traditional
project steering is overly focused on supporting process artifacts
such as plans, requirements, progress reports, and documentation.
Measuring these secondary artifacts yields only subjective guesses of
progress and quality, and creates significant overhead. Factual
measures of design quality come from the primary artifacts, namely
the evolving code base, and these sources enable a more honest
assessment. With these more objective insights, project leadership
can:

• Locate the root-cause complexity tumors

• Benchmark and understand quality trends

• Forecast economic outcomes more predictably

Leaders can steer the software delivery process more honestly by
measuring and understanding the evolving product artifacts. For
example, such measures are a necessity when deciding whether a
legacy code base should be ported, refactored, replaced, or migrated
to the cloud.

What is design quality and how do we measure it?
A software system is well designed when its code base adheres to
certain principles that enable agility, maintainability, and
understandability. These include modularity, layering, hierarchy,
inheritance, and reuse. When designed well, they have properties
that allow individual parts to be changed separately without
overwhelming and unintended consequences.

Quantifying design quality is one of the software industry’s holy grails.
Our research and field applications demonstrate valuable insights
that can be realized through code scans and visualized through design
structure matrices (DSMs). A DSM is a visual representation of the

network of entities and relationships that make up a software system.
Silverthread has pioneered the use of DSMs to visualize and quantify
design principles. Ideal DSMs, like the one illustrated in Figure 1, have
a horizontal layer of hierarchical control dependencies from a well-
structured control component, with very few other component-to-
component dependencies. They also tend to have a vertical column
of dependencies for shared utilities and reusable services, APIs,
classes, and data elements.

Figure 1: DSM of an ideal code base

After 15 years of Harvard/MIT research capturing a diverse spectrum
of various systems, we found recurring patterns of good and bad
quality. Figure 2 illustrates two typical DSMs at opposite ends of the
quality spectrum.

Figure 2: DSMs help us visualize design quality principles

The modular DSM on the left exhibits locally tight coupling within
components but relatively loose coupling among components. The
alarming structure on the right exhibits tight coupling across a large,
dominant core component (red), with smaller peripheral
components. The “core” is the component that is most complex and
least hierarchical. Our research has substantiated that a wide
variance in economic outcomes is significantly correlated to wide
variations in design quality.

make software better, make better software

 SILVERTHREAD ©2016

Figure 3 is a visualization of System X from a Silverthread CodeMRI®
report. The system was developed by a system integrator, then
handed off to a government organization for maintenance and
operation. The red portion of the diagram shows a core of 11,000 files
that are circularly interdependent on each other, directly or
indirectly. Encapsulation, dependencies, and APIs are absent or have
degraded over time.

Figure 3: A code base with design quality problems

Predicting waste and overhead in software efforts
The Silverthread team has established a large body of empirical
software data and published research that statistically links design
quality to software economic outcomes. This body of data includes
defect density, developer productivity, bugs deployed into
production, and other key performance drivers used to make
software economics predictions. Figures 4 and 5 show predictions of
team productivity based on thousands of similar systems.

Figure 4: Percentage of effort expected in fixing defects

Econometric models were applied to predict the balance of labor
expected between fixing defects (playing defense) versus adding new
features (playing offense) in a code base. Figure 4 shows code base
size (X=axis) versus projected bug labor % (Y-axis) for thousands of
systems, including System X (blue dot). The chart predicts that >60%
of effort in System X might be dedicated to bug-fix activity due to
complexity and design quality challenges.

Predicting efficiency of software delivery
Figure 5 illustrates the predicted number of labor-days required to
develop and debug a new 1,000-line feature. A typical developer in
System X is predicted to require more than 80 days: 30 to complete
development and 50 to test. In contrast, developers working in
systems ranked in the top 10% of our benchmarks can deliver a 1,000-
line feature in 15 days.

Figure 5: System X will have high defect rates.

Enabling more honest conversations and building trust
System X has experienced significant maintenance difficulties.
Developers feel choked by waste, rework, complexity, unanticipated
side effects, and low morale. Program leadership suffers from an
inability to meet user expectations within a reasonable timeframe
and the loss of credibility in forecasting cost, quality, and release
targets.

When complexity grows and measurements are largely guesswork,
trust between development teams and program leadership dissolves.
Quantifying design quality directly from the evolving code base
delivers a critical quid pro quo: less overhead for practitioners and
more insightful dynamic control for management. When practitioners
and managers use the same measures, trust grows. Increasing trust
enables leaner production by reducing sources of overhead,
unnecessary rework, and waste. Trust is the currency of lean
engineering efficiency.

Contact Us

Silverthreads’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.

http://silverthreadinc.com

0%

10%

20%

30%

40%

50%

60%

70%

0.001 0.1 10 1000 100000

B
u

g
la

b
o

r
(%

)

Lines of code (1,000s)

All Benchmarks Air Force System

Large core
indicates lack of

modularity

http://silverthreadinc.com/

