
FROM THE EDITOR
Editor: Editor Name
affi l iation
email@email.com

104	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

ON DEVOPS
Editor: Mik Kersten
Tasktop
mik@tasktop.com

Modular Architectures
Make You Agile in the
Long Run
Dan Sturtevant

THE 2017 STATE of DevOps Re-
port noted that loosely coupled ar-
chitectures spur team performance
by making it “easy to modify or
replace any individual component
or service without making corre-
sponding changes to [those] that
depend on it.”1 Put another way,
systems with degraded modular-
ity are incredibly difficult to change
because pulling one thread always
seems to lead to another headache.
Engineers give up after months of
fruitless investigation and failed
changes. When architectural com-
plexity proliferates, systems are no

longer understandable. Teams can’t
communicate about them, learning
curves grow, morale plummets, and
staff turnover increases.

Over the past 15 years, our re-
search team, led by Carliss Baldwin
and Alan MacCormack at the Har-
vard Business School, have devised
methods for measuring modular-
ity and its erosion. We scanned
thousands of code bases and found
architectural flaws in many. We in-
vestigated how architecture degra-
dation impacts business outcomes.
This included studies of defects and
safety,2 developer productivity and

development staff turnover,3 vulner-
ability,4 the ability to drive new rev-
enue,5 and de facto vendor lock-in.6
Our team also recently founded Sil-
verthread Inc. Over the past three
years, Silverthread has helped more
than 75 commercial and US federal
government customers gain visibil-
ity, quantify the cost of ownership
and risk, and regain control of their
development projects.

These experiences have convinced
us that that long-term agility is pos-
sible only if you’re employing an
agile product architecture. Not ev-
eryone shares this view. In the past

From the Editor

Gene Kim once told me that organizations that require a developer to take 10 people

out to lunch to get an API change done appear to have lower IT performance. He

and I hypothesized that an overly high “lunch factor” would impede DevOps trans-

formations, and added some questions on this to the 2017 State of DevOps Report

to learn more about the role of architecture in DevOps. The conclusion in the report

reads, “Loosely coupled architectures and teams are the strongest predictor of

continuous delivery.” My colleagues Alan MacCormack, Carliss Baldwin, and

Dan Sturtevant at the Harvard Business School have devised a way to measure and

visualize architecture quality and its “cost of ownership” consequences that goes

far beyond the “lunch factor.” —Mik Kersten

ON DEVOPS

	 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE � 105

decade, agile practitioners have fo-
cused intensely on improving soft-
ware development processes and not
so much on technical health. We’ve
worked with several large organiza-
tions in which the application of lean
principles produced underwhelming
results. This is because velocity mea-
surement, planning poker, attacking
defect backlogs, Kanban cards, pair
programming, or sprint-based plan-
ning does little to attack the root
cause of problems that are inherently
structural. If humans can’t easily
understand or modify their code,
teams might be using the best agile
practices, but their ability to respond
to market demands will be far from
agile. Technical debt will weigh down
the value stream’s performance.

Here, I introduce sophisticated
ways to visualize and quantify
software modularity and its ero-
sion. These techniques can help
you identify architectural-complexity
hotspots. I highlight research that
has measured economic impact
and helped organizations improve

architectural outcomes. And I discuss
how to use quantitative software de-
sign analysis to help teams decide if
and when to refactor or rewrite soft-
ware, using objective financial mod-
els of the likely return on investment
(ROI).

Principles of Architectural
Health
Today’s enterprise software systems
are so large that no one person can
understand how everything works.
There are no laws of physics to con-
strain solutions. Software systems
are complex networks of unbounded
abstractions with huge numbers of
interconnections.

So, designers use well-accepted
architectural principles to gain con-
trol of this complexity. These prin-
ciples allow decomposition of a
complex system into more under-
standable chunks so that teams of
cognitively bounded humans can
work on different parts as indepen-
dently as is practical. They also en-
sure that changes don’t propagate in

unintended ways, creating defects
and rework and slowing down fu-
ture adaptation.

We’ve learned to ask three key
questions when assessing architec-
tural health. Is the system modu-
lar or loosely coupled in terms of
the connections between compo-
nents? Are the components orga-
nized hierarchically—with a clear
sense of those at the top, middle,
and bottom? Are the components
well designed and not unnecessarily
complex?

Imagine a system so complex that
a human would need an IQ of 400
to understand it completely. To cope
with this complexity, we adopt a
healthy architecture (see Figure 1a),
which is structured into modules,
each managed by a small team of
people with IQs of 100. Each module
has a simple API that hides its inter-
nal complexity, letting other teams
use a simplified mental model. The
code base is laid out hierarchically
so that interteam relationships are
clear and evolution is manageable.

Reuse and
portability
eliminated

API
circumvented

Cyclicality

API

Modularity

Hierarchical
dependence

Internal
complexity

growth

(a) (b)

FIGURE 1. Architectural health. (a) This healthy architecture is structured into modules, each of which is manageable by a small

team of people with IQs of 100. (b) In this unhealthy architecture, it’s hard to understand what’s going on and reliably anticipate side

effects of changes.

ON DEVOPS

106	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

In the unhealthy architecture in
Figure 1b, one module has grown
too big, requiring an IQ of 200 to
understand what’s going on and
reliably anticipate side-effects of
changes. In addition, APIs have
been circumvented, exposing exter-
nal teams to this growing internal
complexity. Finally, cyclicality has
been introduced, destroying the or-
derly hierarchy and creating complex
communication and coordination
requirements.

In software systems, entropy
naturally turns healthy designs into
unhealthy designs, unless proac-
tive measures are in place to stop
this evolution. Even the most well-
designed systems erode over time.
This slowly and imperceptibly in-
creases the cognitive demands on
developers, requiring everyone to in-
creasingly rely on incomplete mental
models. These breakdowns increase
the potential for changes to propa-
gate across the system, compounding
errors, generating unpredictable be-
haviors, and creating tension across
the organization. Because it’s unreal-
istic to staff teams with people with
IQs of 400 to anticipate such issues,
the problems perpetuate, and the ar-
chitecture continues degrading.

Figure 1a is similar to the white-
board drawings engineers use every
day. Unfortunately, over 80 percent
of the code bases we scan look more
like Figure 1b. Idealized pictures
reflect flawed mental models. De-
velopers don’t see the hidden struc-
ture responsible for unanticipated
side effects, frozen code, dead-
locked organizations, and premature
obsolescence.

Detecting Architectural-Health
Problems
Unmapped, unpredictable linkages
between software components are

the root cause of macro-level com-
plexity. To attack this complexity,
we must understand these hidden
relationships. At a structural level,
code is made up of entities and
directional relationships between
them—“B uses A.” Entities include
functions, classes, datatypes, source
files, and so on. Relationships arise
through calls, inheritance, instantia-
tion, and other programmatic tech-
niques. If B uses A, then B depends
on A to get its job done. If A doesn’t
perform as expected, then B’s func-
tionality might suffer. In turn, en-
tities that depend on B might also
suffer. In essence, linkages between
entities increase the potential for
changes to propagate through a sys-
tem, creating unintended behaviors.

Modern code bases contain mil-
lions of entities and billions of paths
between them. The most problem-
atic of these paths are cyclical. The
components along such paths both
depend on, and are depended on by,
many other components. As a code
base grows, these cyclical groups—
which we call cores—can proliferate
as modularity and hierarchy erode,
causing hundreds or thousands of
source files to become mutually inter
dependent. In these cores, changes
have strong, reinforcing ripple effects.
A single change to a file can impact
thousands of others, in distant parts
of the system. Critically, this com-
plexity can’t be detected through in-
spection or code reviews. It’s made
visible only by tracing relationships
between files across the system and
its associated organizational groups.

Baldwin, MacCormack, and John
Rusnak pioneered a visualization
and analysis method that reveals a
code base’s hidden structure.7 This
method makes it clear which com-
ponents are upstream in the sys-
tem (depended on by others), which

components are downstream (depen-
dent on others), the system cores’ lo-
cation and size, and the degree to
which the system as a whole is loosely
coupled, versus being integral or
monolithic. The method leverages
a network-analysis technique called
Design Structure Matrices (DSMs).
DSMs capture directed relationships
between system components. They
provide both visual information about
a system and quantitative metrics that
capture its structure.

Figure 2 shows DSMs for two
releases of an Olympus software
product—before and after highly
successful refactoring effort. Each
DSM displays all the files in this
system—more than 4,500 of them—
in a square matrix. The dots represent
a direct dependency between two files
(for example, if file A uses file B, a dot
appears in row A and column B). We
sort files using algorithms that take
into account their level of coupling
and position in the system hierarchy.
This results in a view in which as
many dots as possible are below the
diagonal. The dots above the diagonal
indicate cyclical dependencies. Files
that are part of the same cyclic group
can be clustered together to show
the system cores. In Figure 2, the red
squares indicate the large cores.

In Figure 2a, the core is more
than 800 files, or 15 percent of the
system. Figure 2b shows that Olym-
pus’s successful refactoring effort
split this core into two smaller ones
with 250 and 150 files. In essence,
our methods let us demonstrate that
this refactoring significantly reduced
cognitive complexity and the poten-
tial for changes to propagate. Our
methods also let organizations make
financial projections of the value re-
leased in such efforts; such projec-
tions are critical for projecting the
ROI of refactoring projects.

ON DEVOPS

	 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE � 107

The Cost of Complexity
Architecture erosion has serious
cost-of-ownership and risk conse-
quences. Consider IronBridge,3 a
successful firm that developed and
maintained a large product platform
with 20,000 files. In this organiza-
tion, one team faced significant per-
formance challenges. Compared to
other teams, it was more likely to
miss schedules and ship buggy code.
It had also experienced multiple un-
successful modernization efforts.
This team was responsible for sub-
systems containing approximately
2,600 files.

Our analysis found that 2,000
of those files were part of a large
core. Historical scans revealed that
this issue originated more than a de-
cade prior and had grown over time.
More than 100 developers were
contributing new features and bug
fixes to this core, creating a large ex-
tended team with combinatorically
difficult communication require-
ments. Interviews revealed that even

the most experienced developers had
mental models that differed signifi-
cantly from the actual relationships
in the code base and from the mental
models held by others.

To study this complexity’s cost,
we mined information from the
firm’s management systems. After
controlling for traditional code-
quality metrics, we found that the
core files had substantial perfor-
mance challenges regarding quality,
productivity, and cost:

•	 The files had three times as
many defects.

•	 Developers experienced a 60 per-
cent decline in productivity and
spent 70 percent of their time
fixing defects (versus 20 percent
in the periphery).

•	 More than 80 percent of the
commits failed integration tests.

Not surprisingly, this complex-
ity and the performance challenges
it generated ultimately had a very

human cost. Turnover among the de-
velopers who worked mostly in the
core was 10 times greater than that
for developers who worked elsewhere.

The combination of decreased
productivity and increased effort
on non-value-added activities cre-
ates a recipe for a severe competi-
tive disadvantage. Confronted with
competitors that possess healthy ar-
chitectures and thus are more agile,
firms that resist tackling complexity
are likely to sow the seeds of their
own destruction.

Architectural Agility
for DevOps
Agile processes have deservedly re-
ceived much attention because they’re
a better way to run development.
However, 15 years of research and
commercial projects have taught us
that agile processes aren’t always
enough to make a project agile. The
analysis of thousands of commercial,
government, and open-source systems
has led us to the following conclusions.

(a) (b)

829

52

141

265

FIGURE 2. Design Structure Matrices for a commercial code base (a) before refactoring and (b) after refactoring. The dots above the

diagonal indicate cyclical dependencies; the red square indicates the significant cores.

ON DEVOPS

108	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

First, maintaining a healthy or-
ganization requires managing archi-
tectural health as a code base grows.
We’ve never encountered a proj-
ect or system that performed well
when architecture degradation was
significant.

Second, architectural agility can
provide a competitive advantage. We
often see competitive products with
similar functionalities but very dif-
ferent architectural-health profiles.8
Differences in nonessential complex-
ity typically correlate with differences
in innovation and market success.

Third, architecture degradation
can lead to technical bankruptcy.
We recently scanned a 50-year-old
US federal government code base
with a core of 11,000 files. Predic-
tive analytics suggested that a typi-
cal change would take more than 80
days (versus 15 required for a three-
week sprint) and that 80 percent of
resources were being wasted fighting
fires. Follow-up conversations vali-
dated these projections and revealed
that the organization had been ham-
strung for five years.

Finally, as Olympus demonstrated
in Figure 2, refactoring can make a
big difference.

If you simply use agile pro-
cesses in a nonagile product ar-
chitecture, you’ll get faster at

delivering nonvalue. Architecture will
become the biggest bottleneck to your
DevOps transformation. You need
a balanced focus on agile process
and agile architecture. With this ap-
proach, your organization can sustain
excellence and succeed at the pace of
delivery enabled by DevOps.

Acknowledgments
I’m grateful to Mik Kersten for sharing

his unique insights on coordination and

collaboration across large enterprises. I

also thank the members of the Agile Al-

liance Technical Debt Initiative for shar-

ing their thoughts on agile and technical

health over the past three years.

References
	 1.	N. Fosgren et al., 2017 State of

DevOps Report, Puppet, 2017;

puppet.com/resources/whitepaper

/state-of-devops-report.

	 2.	A. MacCormack and D.J. Sturte-

vant, “Technical Debt and System

Architecture: The Impact of Coupling

on Defect-Related Activity,” J. Sys-

tems and Software, Oct. 2016, pp.

170–182.

	 3.	D.J. Sturtevant, “System Design and

the Cost of Architectural Complex-

ity,” PhD dissertation, MIT, 2013.

	 4.	A. Akaikine, “The Impact of Soft-

ware Design Structure on Product

Maintenance Costs and Measurement

of Economic Benefits of Product Re-

design,” master’s thesis, MIT, 2010.

	 5.	S.M. Gilliland, “Empirical Analysis

of Software Refactoring Motivation

and Effects,” master’s thesis, MIT,

2015.

	 6.	C.W. Berardi, “Intellectual Property

and Architecture: How Architecture

Influences Intellectual Property Lock-

In,” PhD dissertation, MIT, 2017.

	 7.	C. Baldwin, A. MacCormack, and

J. Rusnak, “Hidden Structure: Using

Network Methods to Map System

Architecture,” Research Policy, vol.

43, no. 8, 2014, pp. 1381–1397.

	 8.	A. MacCormack, C. Baldwin, and

J. Rusnak, “Exploring the Duality

between Product and Organizational

Architectures: A Test of the ‘Mirror-

ing’ Hypothesis,” Research Policy,

vol. 41, no. 8, 2012, pp. 1309–1324.

ABOUT THE AUTHOR

DAN STURTEVANT is the cofounder and CEO of Silverthread. Contact

him at dan@silverthreadinc.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

