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Modular Architectures 
Make You Agile in the 
Long Run
Dan Sturtevant

THE 2017 STATE of DevOps Re-
port noted that loosely coupled ar-
chitectures spur team performance 
by making it “easy to modify or 
replace any individual component 
or service without making corre-
sponding changes to [those] that 
depend on it.”1 Put another way, 
systems with degraded modular-
ity are incredibly difficult to change 
because pulling one thread always 
seems to lead to another headache. 
Engineers give up after months of 
fruitless investigation and failed 
changes. When architectural com-
plexity proliferates, systems are no 

longer understandable. Teams can’t 
communicate about them, learning 
curves grow, morale plummets, and 
staff turnover increases.

Over the past 15 years, our re-
search team, led by Carliss Baldwin  
and Alan MacCormack at the Har-
vard Business School, have devised 
methods for measuring modular-
ity and its erosion. We scanned 
thousands of code bases and found 
architectural flaws in many. We in-
vestigated how architecture degra-
dation impacts business outcomes. 
This included studies of defects and 
safety,2 developer productivity and 

development staff turnover,3 vulner-
ability,4 the ability to drive new rev-
enue,5 and de facto vendor lock-in.6 
Our team also recently founded Sil-
verthread Inc. Over the past three 
years, Silverthread has helped more 
than 75 commercial and US federal 
government customers gain visibil-
ity, quantify the cost of ownership 
and risk, and regain control of their 
development projects.

These experiences have convinced 
us that that long-term agility is pos-
sible only if you’re employing an 
agile product architecture. Not ev-
eryone shares this view. In the past 
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decade, agile practitioners have fo-
cused intensely on improving soft-
ware development processes and not 
so much on technical health. We’ve 
worked with several large organiza-
tions in which the application of lean 
principles produced underwhelming 
results. This is because velocity mea-
surement, planning poker, attacking 
defect backlogs, Kanban cards, pair 
programming, or sprint-based plan-
ning does little to attack the root 
cause of problems that are inherently 
structural. If humans can’t easily  
understand or modify their code, 
teams might be using the best agile 
practices, but their ability to respond 
to market demands will be far from  
agile. Technical debt will weigh down 
the value stream’s performance.

Here, I introduce sophisticated 
ways to visualize and quantify 
software modularity and its ero-
sion. These techniques can help  
you identify architectural-complexity  
hotspots. I highlight research that 
has measured economic impact 
and helped organizations improve 

architectural outcomes. And I discuss 
how to use quantitative software de-
sign analysis to help teams decide if 
and when to refactor or rewrite soft-
ware, using objective financial mod-
els of the likely return on investment 
(ROI).

Principles of Architectural 
Health
Today’s enterprise software systems 
are so large that no one person can 
understand how everything works. 
There are no laws of physics to con-
strain solutions. Software systems 
are complex networks of unbounded 
abstractions with huge numbers of 
interconnections.

So, designers use well-accepted 
architectural principles to gain con-
trol of this complexity. These prin-
ciples allow decomposition of a 
complex system into more under-
standable chunks so that teams of 
cognitively bounded humans can 
work on different parts as indepen-
dently as is practical. They also en-
sure that changes don’t propagate in 

unintended ways, creating defects 
and rework and slowing down fu-
ture adaptation.

We’ve learned to ask three key 
questions when assessing architec-
tural health. Is the system modu-
lar or loosely coupled in terms of 
the connections between compo-
nents? Are the components orga-
nized hierarchically—with a clear 
sense of those at the top, middle, 
and bottom? Are the components 
well designed and not unnecessarily 
complex?

Imagine a system so complex that 
a human would need an IQ of 400 
to understand it completely. To cope 
with this complexity, we adopt a 
healthy architecture (see Figure 1a), 
which is structured into modules, 
each managed by a small team of 
people with IQs of 100. Each module 
has a simple API that hides its inter-
nal complexity, letting other teams 
use a simplified mental model. The 
code base is laid out hierarchically 
so that interteam relationships are 
clear and evolution is manageable.
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FIGURE 1. Architectural health. (a) This healthy architecture is structured into modules, each of which is manageable by a small 

team of people with IQs of 100. (b) In this unhealthy architecture, it’s hard to understand what’s going on and reliably anticipate side 

effects of changes.
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In the unhealthy architecture in 
Figure 1b, one module has grown 
too big, requiring an IQ of 200 to 
understand what’s going on and 
reliably anticipate side-effects of 
changes. In addition, APIs have 
been circumvented, exposing exter-
nal teams to this growing internal 
complexity. Finally, cyclicality has 
been introduced, destroying the or-
derly hierarchy and creating complex 
communication and coordination 
requirements.

In software systems, entropy 
naturally turns healthy designs into 
unhealthy designs, unless proac-
tive measures are in place to stop 
this evolution. Even the most well-
designed systems erode over time. 
This slowly and imperceptibly in-
creases the cognitive demands on 
developers, requiring everyone to in-
creasingly rely on incomplete mental 
models. These breakdowns increase 
the potential for changes to propa-
gate across the system, compounding 
errors, generating unpredictable be-
haviors, and creating tension across 
the organization. Because it’s unreal-
istic to staff teams with people with 
IQs of 400 to anticipate such issues, 
the problems perpetuate, and the ar-
chitecture continues degrading.

Figure 1a is similar to the white-
board drawings engineers use every 
day. Unfortunately, over 80 percent  
of the code bases we scan look more 
like Figure 1b. Idealized pictures 
reflect flawed mental models. De-
velopers don’t see the hidden struc-
ture responsible for unanticipated 
side effects, frozen code, dead-
locked organizations, and premature 
obsolescence.

Detecting Architectural-Health 
Problems
Unmapped, unpredictable linkages 
between software components are 

the root cause of macro-level com-
plexity. To attack this complexity, 
we must understand these hidden 
relationships. At a structural level, 
code is made up of entities and  
directional relationships between 
them—“B uses A.” Entities include 
functions, classes, datatypes, source 
files, and so on. Relationships arise 
through calls, inheritance, instantia-
tion, and other programmatic tech-
niques. If B uses A, then B depends 
on A to get its job done. If A doesn’t 
perform as expected, then B’s func-
tionality might suffer. In turn, en-
tities that depend on B might also 
suffer. In essence, linkages between 
entities increase the potential for 
changes to propagate through a sys-
tem, creating unintended behaviors.

Modern code bases contain mil-
lions of entities and billions of paths 
between them. The most problem-
atic of these paths are cyclical. The 
components along such paths both 
depend on, and are depended on by, 
many other components. As a code 
base grows, these cyclical groups—
which we call cores—can proliferate 
as modularity and hierarchy erode, 
causing hundreds or thousands of 
source files to become mutually inter
dependent. In these cores, changes 
have strong, reinforcing ripple effects. 
A single change to a file can impact 
thousands of others, in distant parts 
of the system. Critically, this com-
plexity can’t be detected through in-
spection or code reviews. It’s made 
visible only by tracing relationships 
between files across the system and 
its associated organizational groups.

Baldwin, MacCormack, and John  
Rusnak pioneered a visualization 
and analysis method that reveals a 
code base’s hidden structure.7 This 
method makes it clear which com-
ponents are upstream in the sys-
tem (depended on by others), which 

components are downstream (depen-
dent on others), the system cores’ lo-
cation and size, and the degree to 
which the system as a whole is loosely 
coupled, versus being integral or 
monolithic. The method leverages 
a network-analysis technique called 
Design Structure Matrices (DSMs). 
DSMs capture directed relationships 
between system components. They 
provide both visual information about  
a system and quantitative metrics that  
capture its structure.

Figure 2 shows DSMs for two 
releases of an Olympus software 
product—before and after highly 
successful refactoring effort. Each 
DSM displays all the files in this  
system—more than 4,500 of them—
in a square matrix. The dots represent 
a direct dependency between two files 
(for example, if file A uses file B, a dot 
appears in row A and column B). We 
sort files using algorithms that take 
into account their level of coupling 
and position in the system hierarchy. 
This results in a view in which as 
many dots as possible are below the 
diagonal. The dots above the diagonal 
indicate cyclical dependencies. Files 
that are part of the same cyclic group 
can be clustered together to show 
the system cores. In Figure 2, the red 
squares indicate the large cores.

In Figure 2a, the core is more 
than 800 files, or 15 percent of the 
system. Figure 2b shows that Olym-
pus’s successful refactoring effort 
split this core into two smaller ones 
with 250 and 150 files. In essence, 
our methods let us demonstrate that 
this refactoring significantly reduced 
cognitive complexity and the poten-
tial for changes to propagate. Our 
methods also let organizations make 
financial projections of the value re-
leased in such efforts; such projec-
tions are critical for projecting the 
ROI of refactoring projects.
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The Cost of Complexity
Architecture erosion has serious 
cost-of-ownership and risk conse-
quences. Consider IronBridge,3 a 
successful firm that developed and 
maintained a large product platform 
with 20,000 files. In this organiza-
tion, one team faced significant per-
formance challenges. Compared to 
other teams, it was more likely to 
miss schedules and ship buggy code. 
It had also experienced multiple un-
successful modernization efforts. 
This team was responsible for sub-
systems containing approximately 
2,600 files.

Our analysis found that 2,000 
of those files were part of a large 
core. Historical scans revealed that 
this issue originated more than a de-
cade prior and had grown over time. 
More than 100 developers were 
contributing new features and bug 
fixes to this core, creating a large ex-
tended team with combinatorically 
difficult communication require-
ments. Interviews revealed that even 

the most experienced developers had 
mental models that differed signifi-
cantly from the actual relationships 
in the code base and from the mental 
models held by others.

To study this complexity’s cost, 
we mined information from the 
firm’s management systems. After 
controlling for traditional code-
quality metrics, we found that the 
core files had substantial perfor-
mance challenges regarding quality, 
productivity, and cost:

•	 The files had three times as 
many defects.

•	 Developers experienced a 60 per-
cent decline in productivity and 
spent 70 percent of their time 
fixing defects (versus 20 percent 
in the periphery).

•	 More than 80 percent of the 
commits failed integration tests.

Not surprisingly, this complex-
ity and the performance challenges 
it generated ultimately had a very 

human cost. Turnover among the de-
velopers who worked mostly in the 
core was 10 times greater than that 
for developers who worked elsewhere.

The combination of decreased 
productivity and increased effort 
on non-value-added activities cre-
ates a recipe for a severe competi-
tive disadvantage. Confronted with 
competitors that possess healthy ar-
chitectures and thus are more agile, 
firms that resist tackling complexity 
are likely to sow the seeds of their 
own destruction.

Architectural Agility  
for DevOps
Agile processes have deservedly re-
ceived much attention because they’re 
a better way to run development. 
However, 15 years of research and 
commercial projects have taught us 
that agile processes aren’t always 
enough to make a project agile. The 
analysis of thousands of commercial, 
government, and open-source systems 
has led us to the following conclusions.

(a) (b)
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FIGURE 2. Design Structure Matrices for a commercial code base (a) before refactoring and (b) after refactoring. The dots above the 

diagonal indicate cyclical dependencies; the red square indicates the significant cores.
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First, maintaining a healthy or-
ganization requires managing archi-
tectural health as a code base grows. 
We’ve never encountered a proj-
ect or system that performed well 
when architecture degradation was 
significant.

Second, architectural agility can 
provide a competitive advantage. We 
often see competitive products with 
similar functionalities but very dif-
ferent architectural-health profiles.8 
Differences in nonessential complex-
ity typically correlate with differences 
in innovation and market success.

Third, architecture degradation 
can lead to technical bankruptcy. 
We recently scanned a 50-year-old 
US federal government code base 
with a core of 11,000 files. Predic-
tive analytics suggested that a typi-
cal change would take more than 80 
days (versus 15 required for a three-
week sprint) and that 80 percent of 
resources were being wasted fighting 
fires. Follow-up conversations vali-
dated these projections and revealed 
that the organization had been ham-
strung for five years.

Finally, as Olympus demonstrated 
in Figure 2, refactoring can make a 
big difference.

If you simply use agile pro-
cesses in a nonagile product ar-
chitecture, you’ll get faster at 

delivering nonvalue. Architecture will 
become the biggest bottleneck to your  
DevOps transformation. You need 
a balanced focus on agile process 
and agile architecture. With this ap-
proach, your organization can sustain 
excellence and succeed at the pace of 
delivery enabled by DevOps. 
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