

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

Is your code structured as you intended? Probably not.
Hidden and unintentional complexity causes waste and overhead. Identify architectural impurities early and consistently.

Software architectures diverge from intentions over time.
A software architecture must be measured regularly and objectively
to stay healthy. Architectural evolution often occurs organically, with
many constituents changing individual elements separately. Schedule
pressures, individual motivations, competing performance measures,
and the immense complexity of most systems result in long chains of
sequential and parallel incremental change of the parts without a
commensurate understanding of the whole. Eventually, there is a gap
in understanding between the intended architectural structure and
the system’s actual architecture evolving in the coded elements. This
architectural entropy leads to unpredictability and confusion.
Engineers flounder trying to understand the ever-increasingly
complex systems that their enterprises maintain and depend on.
Managers feel out of control when seemingly straightforward
changes cause malignant breakage and protracted timelines.

Software talks; supplemental artifacts walk.
Most software teams rely on supplemental artifacts disconnected
from the code base to communicate the design structure. More
honest measurements and up-to-date insight come directly from the
code and test base itself.

Supplemental artifacts such as hand-written documentation,
separate design models, PowerPoint charts, or build files can
indirectly describe design quality, but engineers may subvert these
indirect controls. Sometimes they do so cleverly. Most of the time,
however, they do so unknowingly. A more reliable method
periodically scans the evolving code-base directly with quantified
network analytics. Such analysis provides a measured representation
of the actual architecture for review and control.

Mind the understanding gap
When a team’s understanding of the code base aligns well with the
actual software, less overhead is required, less waste and rework is
experienced, confidence and trust increase, and efficiency improves
dramatically. Less overhead and waste translates into higher team
morale and improved economic outcomes.

An overemphasis on measuring process artifacts creates distracting
noise and unnecessary overhead. Measuring things that are useful to
management but not to practitioners (or vice versa) erodes trust.
• The old way. Measures of the process and other supplemental

artifacts are indirect indicators and more subjective guesses.
They are noisier, and easier to game.

• The new way. Measure the dynamic characteristics of the
product pipeline, not the process pipeline. Direct measures of
the code/test base are objective facts and mostly signal.

The gap between design intentions and coded releases can be
measured and understood so that technical debt can be minimized.

The importance of frequent, macro-level measurement
Well-architected systems help ensure the confident, independent
evolution of software components over time, providing a durable
framework where engineers can add value to an evolving software
system. Design quality quantifies architectural attributes that enable
efficient and effective incremental change. Silverthread research has
demonstrated that when these attributes degrade, business
outcomes degrade commensurately. When this degradation is
identified early, efficient resolution is practical. When it goes
unnoticed and uncovered until later, the unintended consequences
can be unrecoverable.

Figure 1 is a file-level visualization from a Silverthread CodeMRI®
report. SubsystemX is one subsystem of a code base developed and
maintained by a large air travel services organization. This subsystem
consists of 70 components, each with direct and indirect dependence
on other components. The software team’s lack of agility, as well as
their inability to reuse valuable utilities located within this
component, was a serious concern. The organization was preparing
to move its software into the cloud and required an objective
measure of the readiness for this component to work effectively in its
new microservice architecture. Figure 1 captures the actual structure
of these files and components, including thousands of unexpected
illegal dependencies appearing above the diagonal.

Figure 1: Insights revealed by network analysis

Figure 2 shows the same subsystem relationships abstracted up to a
higher component level. It also shows the intended structure
understood by engineers and captured in supplemental artifacts.

Unexpected
relationships

©2016 - 2020 Silverthread Inc. | 200 Portland Street, Suite 500, Boston, MA 02114 | www.silverthreadinc.com | info@silverthreadinc.com | Ph: (617) 603-0075

Figure 2: SubsystemX intended structure

Figure 3 shows the actual structure extracted from the code base,
including all hidden complexity caused by illegal relationships. The
degree of unexpected cyclicality was alarming, both to practitioners
and to leadership.

 Figure 3: SubsystemX intended vs. actual structure

With this new insight, the team could act on a primary root cause of
their inefficiency and lack of reuse. The amount of unintended
coupling also exposed what this subsystem’s challenges would be if it
were to be refactored for microservices.

Assessing and addressing hidden complexity
Silverthread’s know-how and tooling can help visualize and quantify
hidden and unintended complexity. Clients can expose the
relationships responsible for the design understanding gap by their
degree of architectural impact:
• Green relationships are safe, existing in both the intended

design and actual code base.
• Yellow relationships deserve review. These are suspicious

relationships that do not introduce cyclicality.

• Red relationships deserve critical review. These are suspicious
relationships that cause unintentional cyclicality.

Figure 4 shows a diagnostic view of this subsystem’s component
relationships highlighted as described. Key relationships are now
obvious, providing diagnostic insight to architects about where
unexpected complexity has appeared in their system. Such
visualizations promote more meaningful discussion between
software designers and programmers, and can become the basis for
periodic review and control. Teams can now balance the (previously
misunderstood and nebulous) macro-health of the forest with the
(well-understood and quantified) micro-health of individual health of
the trees.

Figure 4: Architectural component dependencies

Ensuring architectural health through objective measurement
When confronted with these newly visible insights, the development
team was understandably skeptical, having taken great pains to
control their structure effectively via supplemental documentation
and build orders. Follow-up analysis by the developers verified the
findings and resulted in process improvements and several change
initiatives to improve the efficiency of resolving technical debt.

Unexpected architectural divergence can be avoided through periodic
diagnostic assessments of the evolving software structure.
Unintended cyclicality should be systematically addressed as early as
practical to prevent an extensive understanding gap. Silverthread
analytics are well positioned to provide these insights through our
actionable diagnostics. Armed with such insight, software leaders,
architects, and developers can have more meaningful, honest
conversations about software economics.

Contact Us
Silverthread’s mission is to advance the state of software
measurement practice by quantifying complexity and design quality.
Our measurement know-how can establish a more trustworthy
foundation for improving software economics.
http://silverthreadinc.com

